Systematic representation of sound locations in the primary auditory cortex.

نویسنده

  • Khaleel A Razak
چکیده

The primary auditory cortex (A1) is involved in sound localization. A consistent observation in A1 is a clustered representation of binaural properties, but how spatial tuning varies within binaural clusters is unknown. Here, this issue was addressed in A1 of the pallid bat, a species that relies on passive hearing (as opposed to echolocation) to localize prey. Evidence is presented for systematic representations of sound azimuth within two binaural clusters in the pallid bat A1: the binaural inhibition (EI) and peaked (P) binaural interaction clusters. The representation is not a "point-to-point" space map as seen in the superior colliculus, but is in the form of a systematic increase in the area of activated cortex as azimuth changes from ipsilateral to contralateral locations. The underlying substrate in the EI cluster is a systematic representation of the medial boundary of azimuth receptive fields. The P cluster is activated mostly for sounds near the midline, providing a spatial acoustic fovea. Activity in the P cluster falls off systematically as the sound is moved to more lateral locations. Sensitivity to interaural intensity differences predicts azimuth tuning in the vast majority of neurons. Azimuth receptive field properties are relatively stable across intensity over a moderate range (20-40 dB above threshold) of intensities. This suggests that the maps will be similar across the intensities tested. These results challenge the current view that no systematic representation of azimuth is present in A1 and show that such representations are present locally within individual binaural clusters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A systematic representation of interaural intensity differences in the auditory cortex of the pallid bat.

The current model of cortical processing of auditory spatial information is based on an orthogonal representation of frequency and binaural response properties, but how this arrangement leads to representation of space in the auditory cortex is unclear. This study describes the first evidence of a cortical substrate for the systematic representation of space in a region of primary auditory cort...

متن کامل

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

Selective deficits in human audition: evidence from lesion studies

The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...

متن کامل

A rate code for sound azimuth in monkey auditory cortex: implications for human neuroimaging studies.

Is sound location represented in the auditory cortex of humans and monkeys? Human neuroimaging experiments have had only mixed success at demonstrating sound location sensitivity in primary auditory cortex. This is in apparent conflict with studies in monkeys and other animals, in which single-unit recording studies have found stronger evidence for spatial sensitivity. Does this apparent discre...

متن کامل

A Map of Periodicity Orthogonal to Frequency Representation in the Cat Auditory Cortex

Harmonic sounds, such as voiced speech sounds and many animal communication signals, are characterized by a pitch related to the periodicity of their envelopes. While frequency information is extracted by mechanical filtering of the cochlea, periodicity information is analyzed by temporal filter mechanisms in the brainstem. In the mammalian auditory midbrain envelope periodicity is represented ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 39  شماره 

صفحات  -

تاریخ انتشار 2011